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1. Abstract

This project employs the techniques of network science to investigate and discern the underlying
patterns of traffic flow in Istanbul, one of the world’s busiest cities. Using the data collected by
the Istanbul Metropolitan Municipality, we seek to identify and analyze the major traffic nodes
and intersections that exert a significant influence on the city’s overall traffic dynamics. The
objective of our research is to understand the complex and interrelated systems that contribute to
the unique traffic behavior of Istanbul and identify critical points of congestion. With a network
science approach, we propose a model that incorporates spatial correlation and linear diffusion
across different locations, drawing on various traffic parameters. The results from this investigation
include an identification of the key locations on overall traffic flow and a better understanding of
traffic pattern variations. The insights from this research will not only address Istanbul’s traffic
congestion issues but will also enrich the broader field of urban traffic systems, aiding strategic
transportation planning in other metropolitan cities grappling with similar challenges.

Keywords: network science, road networks, diffusion, traffic, congestion propagation, urban
traffic systems, traffic dynamics, istanbul, metropolitan systems
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2. Introduction

Traffic congestion in metropolitan cities has emerged as a pressing issue in the face of rapid
urbanization and globalization (Bull, 2003). The implications of this problem extend beyond mere
transportation inefficiency, permeating into the quality of life of residents, and sustainability. Stud-
ies have also shown that congestion can have an adverse impact on economic productivity, slowing
job growth and affecting productivity per worker. These impacts are particularly noticeable when
there are approximately 4.5 minutes of delay per one-way auto commute and 11,000 average daily
traffic per lane on average across the regional freeway networks (Sweet, 2014). A comprehensive
understanding of traffic network congestion levels is therefore crucial, as it directly influences land
use, productivity, and environmental policy-making processes, thereby affecting the lives of city
residents.

Istanbul, a bustling metropolis renowned for its heavy traffic, presents a unique and com-
plex case for investigating the underlying patterns of vehicular flow. The city’s distinctive traffic
dynamics, shaped by its unexampled geographical, cultural, and infrastructural characteristics,
necessitate a dedicated exploration.

Previous research has significantly contributed to our understanding of urban traffic dynamics.
For instance, studies have delved into macroscopic traffic dynamics and analyzed spatio-temporal
congestion propagation at the network level (Jiang et al., 2017). These investigations have offered
valuable insights into traffic patterns and congestion management in various urban contexts. How-
ever, they often fall short in addressing the unique challenges posed by Istanbul’s traffic dynamics.

In this study, we aim to fill this gap by leveraging the extensive data collected by the Istanbul
Metropolitan Municipality (IMM), which includes the impact of the Covid-19 lockdowns in 2020
and 2021. Our primary objectives are:

1. Identify and analyze the major traffic nodes and intersections that play a pivotal role in
shaping Istanbul’s overall traffic dynamics.

2. Understand the relationship between these nodes and their influence on network.

3. Establish a traffic network model that accurately represents and mimics Istanbul’s traffic
dynamics.

4. Come up with a model to quantify diffusion that can be used in real test scenarios.

By identifying these influential locations and their interrelationships, we aim to gain insights
into the complex systems contributing to Istanbul’s unique traffic behavior. This research not only
targets the difficulties of Istanbul’s distinctive traffic patterns but also enriches the extensive dis-
cipline of urban traffic systems. It propels our understanding and informs strategic transportation
initiatives, thereby benefiting other densely populated metropolises tussling with similar issues.
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3. Data Description

The data that was used is collected and made publicly available by IMM in their Open Data
Portal (Açık Veri Portalı). IMM collects hourly data from over 2400 locations, composed of the
following metrics for each location, with the descriptions:

• DATE_TIME: Contains date and time information. The data is in
YYYY-MM-DD HH24:MI:SS format, and the date break is hourly.

• LATITUDE: Latitude of the point that the data is collected from.

• LONGITUDE: Longitude of the point that the data is collected from.

• GEOHASH: The hashed geo-location of the point that the data is collected from.

• MINIMUM_SPEED: Minimum speed (in km/h) for the respective geohash area for a given
hour.

• MAXIMUM_SPEED: Maximum speed (in km/h) for the respective geohash area for a given
hour.

• AVERAGE_SPEED: Average speed (in km/h) for the respective geohash area for a given
hour.

• NUMBER_OF_VEHICLES: The number of different vehicles in the relevant geohash area
in the given hour.

The published data covers the time frame starting from January 2020 and is published up to
April 2023, monthly. For each month, there exist some gaps, where no data was available for a few
of the stations at most for two hours, but overall, the data is homogeneous in the sense that most
of the data points have the similar number of timestamps. The gaps in the data have pushed the
team to make the decide to average the data out over a full day’s span to overcome the difficulties
of not being able to compare data points based on timestamps.

The data concerns the roads starting from the west end of Istanbul, where there are roads in
the border between Tekirdağ and Istanbul, and spans until the roads that border Gebze, Kocaeli.
The points are located as follows, according to IMM’s portal:

Figure 1: Some of the data points for January 2020
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4. Results and Analysis

4.a. Network’s Structural Analysis

Network analysis enables us to gain insights into the traffic of Istanbul. By analyzing networks,
we can depict the static configuration of roads in Istanbul, while also capturing changes and
developments over time by utilizing data from different time intervals. For this purpose, we created
a correlation network for each month from January 2020 to April 2023 in Istanbul, which was
derived from the hourly traffic density dataset that Istanbul Metropolitan Municipality publishes.
Correlation between the points was measured using the Spearman Correlation, specifically focusing
on the average speed (in km/h) recorded.

The Spearman Correlation is particularly effective for this type of analysis because it is a
non-parametric measure of rank correlation. It assesses how well the relationship between two
variables can be described using a monotonic function. In other words, if the rankings of one
variable increase, whether or not the rankings of the other variable also increase can be examined
with Spearman Correlation. This is especially helpful when analyzing traffic data, where we expect
that as traffic intensity increases in one area (higher ranking), it may also increase in another area
(higher ranking), or conversely, decrease in another area (lower ranking).

Furthermore, the choice to utilize average speed instead of other metrics, such as the number
of vehicles, is driven by several reasons. Firstly, average speed provides a more comprehensive and
meaningful measure of traffic conditions as it takes into account the overall flow and movement of
vehicles within a specific area. In the background, it captures the collective experience of drivers
in terms of the time it takes to traverse a particular distance, reflecting the level of congestion and
efficiency of the transportation network. Furthermore, average speed allows for easier comparison
and analysis across different locations and time intervals. This information is valuable for under-
standing the dynamic nature of traffic and assessing the impact of various factors on the overall
traffic flow.

After calculating the Spearman correlation for each pair of nodes, we filtered out the pairs with
less significant results based on their p-values to focus on a more connected network. We chose the
p-value of 0.01 to maintain a strict level of statistical significance. This choice helps us to reduce
the likelihood of false positives. In other words, by choosing 0.01 as a p-value, we ensure that
the correlations we focus on are both statistically significant and practically meaningful, thereby
enabling us to construct a better view of the connected nodes of Istanbul’s traffic network.

Figure 2: An Example Network - January 2020
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The above illustration (Figure 2) showcases an example network we synthesized, reflecting
data from January 2020, utilizing the visualization software Gephi. To optimize the visual rep-
resentation, we chose to display only the largest connected component of the graph, effectively
encapsulating approximately 90 % of the original nodes. Leveraging Gephi’s Modularity feature,
we were able to determine communities within the network, clarifying the interrelations among
distinct road clusters. Specifically, we employed the Louvain algorithm, a well-known commu-
nity detection method that facilitates the identification of node clusters exhibiting higher-density
connections relative to the rest of the network. Such communities frequently display an elevated
level of organization within the network and offer insights into the infrastructure of the traffic
system. For instance, roads consolidated within the same community might be components of the
same district, or they may concurrently be impacted by certain traffic conditions. Therefore, the
Louvain algorithm allows for a more profound comprehension of these structural interconnections
and associations, enabling us to derive more meaningful interpretations of the network. To detect
critical nodes, we scaled node sizes proportional to their betweenness centralities. This strategy
was instrumental in highlighting focal points that significantly impact the flow within the network.
Finally, we deployed the GeoLayout plugin of Gephi to plot the nodes onto a grid, based on their
respective latitudes and longitudes. This further enhanced our ability to visually represent the
shape and structure of traffic intensities with greater fidelity.

4.a.1. 2020 March vs. 2020 April

Firstly, we wanted to study the alterations in the traffic network structure of Istanbul during
the Covid-19 pandemic. We chose the specific period of interest to observe these structural changes
in March and April, a time of evolving health guidelines and regulations.

On March 11, 2020, the first case of Covid-19 was detected in Turkey, and until April, there were
not many restrictions on Covid-19 ("Turkey confirms first case of coronavirus," 2020). However, a
remarkable transformation occurred in early April when an encompassing curfew was instituted.
This curfew, in essence, acted as an external disruptor to the traffic network, allowing us to explore
the transformations and adaptability of Istanbul’s traffic infrastructure under extreme conditions
("8 Nisan İtibariyle Karantina Uygulamaları,", 8.04.2020).

Figure 3: Correlation Network for March 2020

In March 2020 (Figure 3), the network is more connected, as evident by the darker shaded
regions, which point out the fact that the edge-weights, thus correlation, between the points are
high. Also, the points with higher betweenness centrality are to the outside of the center of
Istanbul, which is probably due to the fact that there are many roads connecting the center, but
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a few roads connecting the outskirts to the center. The clusters are well-separated, meaning that
a good separation of roads is possible and major traffic conjunctions can be identified with ease.

Figure 4: Correlation Network for April 2020

However, in April 2020 (Figure 4), there are major differences to what we could call a ’normal
network’. Firstly, there seems to be more division in the network, which can be identified by the
fact that there are more clusters in the network than in March 2020. The correlation between
the points is less, which we believe is due to the nationwide curfews and restrictions on travel.
Furthermore, the points with higher betweenness centrality have moved closer to the center of the
city, which can be attributed to the shorter distance traveled during strict measures, and people
choosing to stay at home instead of going out. This inherent characteristic of the month is also
visible when we examine the green area, that spans from Eminönü to Bakırköy, which is colored
in green. The edge weight of that region indicates that a lot of the car traffic has happened within
that cluster, which is a compelling argument for the case of short-distance travel.

4.a.2. 2022 January vs. 2022 February

We are also interested in studying the changes in Istanbul’s traffic network during another
significant period in the Covid-19 pandemic, specifically between January and February 2022.
When we look at the dashboard prepared by WHO, we can observe the critical changes in Covid-
19 cases nationwide. More specifically, the end of January 2022 and the beginning of February
2022 marks the peak of COVID in Turkey (World Health Organization, 2023).

In January 2022, the country faced strict Covid-19 restrictions once again as the number of
cases shot up quickly. This sudden increase in cases led to changes in how people traveled, which in
turn, could have impacted Istanbul’s usual traffic patterns. Then in February 2022, the number of
infections rapidly escalated even more, effectively doubling by February, leading to the pandemic’s
peak in Turkey (World Health Organization, 2023).
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Figure 5: Correlation Network for January 2022

In January 2022 (Figure 5), the effect of lockdowns is visually present. We can observe that,
compared to January 2020, the intensity of the traffic is less. However, we see that the nodes with
higher betweenness centrality have moved closer and closer to the center of the city. One of the
most prominent nodes, colored with brown is in the Şişli district, which shows that the model is
compliant with our real-world expectations. Another node in orange with high centrality is the
Avrasya (Eurasia) Tunnel, which connects the two sides of Istanbul. As one might expect, many
of the shortest paths from the Asian side to the European side would go through the tunnel. This
means that, if one were to disrupt the travel through the Avrasya Tunnel, its effects would be
profoundly felt by the whole network.

Figure 6: Correlation Network for February 2022

During the next month (Figure 6), with the rise of another wave of Covid-19, and with new
regulations, we can see the changes reflected in the network as well. Firstly, the intensity of the
colors, which indicate the strong relationship between the points, has been washed away. This
means that there seem to be fewer cars around Istanbul. Secondly, the number of points with high
betweenness centrality has increased, shining light on the fact that the distance of travel has again
been shortened and hence more nodes had shortest paths going over them. Another observation
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is that the Asian side of Istanbul has a more unified structure, which is reflected by the decrease
in the number of different clusters.

4.a.3. 2022 September vs. 2022 October

Lastly, we want to focus on the influence of the academic calendar on Istanbul’s traffic pat-
terns, with a particular focus on September and October. In Turkey, the academic year for primary,
secondary, high school, and university students typically commences at the end of September. Con-
sequently, there is a distinct contrast in traffic conditions between these two months. September,
being the final stretch of the summer break, sees comparatively quieter roads in Istanbul. However,
with the onset of the academic year in October, the city generally experiences a significant increase
in road traffic. We expect to see a change in the structure since the city undergoes a substantial
increase in road traffic, as students return to their educational institutions. For those reasons, to
study the impact of the school calendar on Istanbul traffic, the period of September and October
2022, which marks the first school opening after the COVID-19 effects, holds significant value for
observation.

Figure 7: Correlation Network for September 2022

In September 2022 (Figure 7), we see that with the schools not in session for half of the month,
many of the connections in the previous networks that we have analyzed are not there, which is
probably due to the summer break. As before, the network has more clusters, and the cluster
regions are not strictly defined. We also see that the nodes with the most centrality have shifted to
the outskirts, one possibly closer to Istanbul, which could be attributed to the air traffic that the
Istanbul Airport gets. Overall, we see that Avrasya Tunnel has a great influence on the network,
serving as an underground bridge for the city.
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Figure 8: Correlation Network for October 2022

Moving onto the next month (Figure 8), October 2022, there exists a different scenario. We now
see a more connected network in terms of correlation between the points. However, the clusters
are very scrambled, and a good separation is not achieved. The points with higher betweenness
centrality are now closer to the center of the city, with one connecting Çekmeköy to Yavuz Sultan
Selim Bridge. Another particularly interesting case occurs near Esenyurt and Büyükçekmece,
where the points around there colored brown are connecting a lot of different roads. This might
be attributed to the inflow of people to Istanbul from the cities in the west at the beginning of the
educational year.

4.b. Distance vs. Correlation

For all pairs of nodes in each month, we calculated a correlation. We hypothesized that with
increasing distance, the correlation between the points would decrease as a natural consequence of
spatial constraints and the intricate web of urban development. For instance, nodes far apart in
geographical space, belonging to different city sectors, might demonstrate unique traffic patterns,
influenced by local factors such as road layouts, land use, and population density. These localized
traffic patterns might not necessarily correlate with the traffic characteristics of other distant
locations.

In order to validate this hypothesis and identify any deviations from the expected trend, we
plotted the relationship between the geographical distance and the absolute Spearman correlation
coefficient. While building this plot, we chose to bin the distance variable, as there are many pairs
of points that have the same distance to each other, which would give us a better overall view of
the correlation at that distance. We came up with the optimal bin number as 21, which allowed for
good separation between the points, and for each bin, we averaged out the Spearman correlation
metric. This plot served as a visual tool for inspecting the influence of distance on the correlation
between traffic speeds at different locations. We also did not consider the pair of points that were
more than 100 kilometers away, as they would likely cause noise in our analysis.
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Although we observed some variation in the correlation patterns for different months, the overall
trend indicated a decrease in correlation as the distance between pairs of nodes increased, which
supports our hypothesis. It is important to note that while the correlation generally decreases,
there were instances where the correlation remained relatively constant over varying distances.
These observations highlight the complex nature of traffic dynamics in Istanbul, where certain
factors may lead to localized similarities in traffic patterns even across significant distances.

We see that for most of the months, the average correlation of the closest points is around
0.7, while the most distant points are approximately 0.6. There are some deviations from these
observations, which should be explored in the future with a more in-depth analysis of singular
pairs. Below are four figures, the upper half of which represents the regular behavior of average
correlation with increasing distance, and the bottom half represents a weaker relationship between
the variables’ distance and average correlations, which can be considered as outlier months.

(a) Distance vs. Correlation Plot for March 2020 (b) Distance vs. Correlation Plot for May 2020

(c) Distance vs. Correlation Plot for June 2021 (d) Distance vs. Correlation Plot for February 2022

Figure 9: Distance vs. Correlation Plots for Various Months

Even though the relationship seems weak for some months (Figure 9c, 9d), we are able to
identify a negative relationship between distance and the average correlation metric. The presence
of a negative relationship, albeit varying in strength across different months, indicates a certain
level of spatial heterogeneity in the traffic patterns across Istanbul. This observation aligns with
the intuitive notion that traffic flow and congestion may be affected by location-specific factors
such as the types and levels of activity occurring in different parts of the city.

Interestingly, in certain months like June 2021 and February 2022 (Figure 9c, 9d), the expected
negative correlation is less pronounced, suggesting the influence of other possible factors. For
instance, this could be due to seasonal changes, large-scale events, or alterations in transportation
infrastructure. These findings invite further exploration into the interactions between geographical
distance and traffic patterns in the city.
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4.c. Centrality Analysis - Critical Points

In network analysis, the concept of betweenness centrality plays a crucial role in identifying the
most important nodes in a network. In our case, these nodes correspond to the most significant
regions in Istanbul that bear the most significant impact on the city’s traffic flow. Simply put, a
region with high betweenness centrality implies that it lies on many of the shortest paths traversed
by commuters, acting as a critical connection between various areas. Therefore, such regions can
be seen as ’bottlenecks’ or ’critical points’ in the overall traffic network of Istanbul.

Our last analysis focuses on identifying these critical points, taking into consideration the
monthly fluctuations in Istanbul’s traffic flow. First of all, we took the traffic networks that we
analyzed in the previous sections as a basis. We hypothesize that the region exhibiting the highest
betweenness centrality for a particular month emerges as the most critical region for that month.
This stems from the assumption that regions with a high degree of betweenness centrality play a
central role in the transmission of traffic and can greatly affect flow efficiency, causing delays when
congested.

Figure 10: Points with highest betweenness centrality for all 40 months

When we examine the map for the distribution of the points with the highest centralities (Figure
10), we see a clear divergence in the European side of Istanbul. The only two points on the Asian
side are located in Avrasya Tunnel near Kadıköy and North Marmara Highway near Sultanbeyli.
The rest of them are scattered around the European side, mainly clustering around Büyükçekmece
and Beylikdüzü. The points clustered around these two districts are most likely to have the highest
centralities due to the lack of roads connecting that area to the city center, and thus many of the
shortest paths go through those nodes. We also have seen the effect of Covid-19, on the structure
and the clustering of the network, which has also affected the centralities. Conversely, we believe
that the nodes that have the highest centralities in their respective months that are located near
Şişli have achieved those metrics as they have an intrinsic importance, being a part of the road
that is either leading to a bridge or coming from the bridge. It is also important to highlight the
criticality of the Avrasya Tunnel, about which was mentioned before.
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4.d. Diffusion model for congestion propagation

Significant insights concerning the behaviour of a network can be gained through the use of
reaction-diffusion models (Bellocchi & Geroliminis, 2020). Here, the "reaction" term refers to
a non-linear function which corresponds to the arbitrary choices employed by drivers, such as
deciding to use a less-optimal road because the optimal one is congested. The "diffusion" term
quantifies the natural linear flow between roads, which would be the sole contributor to flow in
the ideal case. Essentially, "reaction" can be defined as describing all non-linear effects other than
"diffusion" that cause deviations within the ideal flow of a road network.

Here, in an effort to quantify the diffusion within the road network we formulate the problem
as follows. Consider the directed weighted graph G = (V,E), where V is the set of stations that
fall within the borders of Istanbul and E = { (vi, vj) ∈ V 2 | dH(vi, vj) < 1 } where dH is the
Haversine distance. Note that the definition allows us to put two diffusion coefficients between
sufficiently close nodes. The corresponding adjacency matrix for G will have diffusion weights σij

> 0 to quantify the diffusion from vi to vj .

Using the definitions above, for a node vi having number of cars Ci diffusion can be modelled
as the differential equation:

∂Ci

∂t
= (

∑
vk∈N(vi)

σkiCk )− (
∑

vk∈N(vi)

σikCi ) (1)

where the terms stand for incoming and outgoing flow respectively, depending on the weight
of the edge and the number of cars at given t. A descriptive explanation for this would be: "The
change in cars with respect to time at a given node is the sum of all cars entering the node minus
all cars exiting from the node."

To find the diffusion weights, we iterate through time intervals and consider the change in
number of cars for each node, ∆C = Ct − Ct−1. At each iteration, given two neighbouring nodes,
we predict the change for one node from the other by multiplying the other node’s change with
the current weight, and comparing it with the real change to improve the weight. As an example,
consider ∆Ctrue

i ,∆Ctrue
j for two neighbouring nodes vi, vj . We predict the change in vj from vi

as ∆Cpred
j = ∆Ctrue

i σij and update the weight as σnext
ij = σij + θ(∆Cpred

j −∆Ctrue
j ) if and only

if sgn(∆Ctrue
j ) = sgn(∆Cpred

j ) so as to improve on the prediction for the next iteration.

The underlying assumption here is that if the changes are reflected similarly for two nodes, then
there is a high chance that the flow is directed through those nodes consecutively, which implies
diffusion. The weights here reflect the magnitude of diffusion, as a high change in a given node
would mean there are more nodes diffusing towards that particular node. With the definition of a
flow parameter, the learned model can be used in experimental testing of congestion flow.

4.d.1. Main diffusion pathways

Employing the proposed approach with all available data points, it was possible to use the
weights/degrees to observe nodes where the diffusion behaviour converged to either local or city-
wide congestions. Figure 11 was generated by first including all nodes on the map and then filtering
out nodes with zero degrees, which are essentially those that were learned to be ineffective. Node
colors correspond to the districts the nodes belonged to.

With the knowledge of these pathways, it becomes possible to foresee an expected scenario
between two nodes on the map. Especially when two nodes are connected with a bridge of single
nodes, the model can be extended to measure propagation between distant nodes as well, by
considering further derivatives for the differential equation. Note that this would most likely be
unfeasible on the general scale and could be partially feasible for single nodes, as the calculation
of the second derivative would be much more expensive than the first derivative.
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Finally, it might be worthwhile to generate different diffusion networks from multiple months
and then arrive at a consensus by averaging or taking the median from the obtained distribution,
especially since we are aware that some months of the data used include extreme conditions.
However, for a general baseline, we decided to make use of all data points regardless of these
considerations.

Figure 11: Learned diffusion paths for Istanbul

4.d.2. Experimental testing

With the learned model, it is possible to conduct extensive experimental testing by initializing
two parameters:

• Flow Magnitude: The percentage of cars that exit from the node at a given time. It is
used to determine the speed of diffusion. Higher speeds mean less accuracy but but also less
time to convergent behaviour (either local or global spreading).

• Starting Position: How many nodes each car has at t = 0.

The results from an example diffusion test from a random central node in Beşiktaş can be
found in Figure 12. Here, the row above has a flow magnitude of 1, while the row below has a flow
magnitude of 5.
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Figure 12: Example diffusions - Beşiktaş

As expected, the diffusion converges much more rapidly at higher flow speeds, but the diffusion
for intermediate nodes on the way up to the convergent state becomes much less stable. Addi-
tionally, the flow speed itself is expected to affect the convergence state, as with the case we have
presented.

Extending the observations, we conclude that by considering the two parameters we have dis-
cussed, it becomes possible to simulate scenarios of diffusion under different conditions. Partic-
ularly, the flow speed is vital to understand. This model operates under the scenario that flow
speed is independent; meaning that the number of cars observed at a station does not affect the
flow speed. The logical justification would be that the increased amount of cars, with decreased
average speed, would balance out the flow.

On a final note, while not all experimental scenarios could be tested due to time constraints,
one can expect nodes to form certain groups by their behaviour. Specifically, some set of local
"sink" nodes pull nearby diffusion, while other "source" nodes consistently push out what they
have, with most nodes taking place somewhere in the middle of this spectrum. The nodes with
"sink" behaviour become particularly important in this case, as they will probably merit most of
the infrastructure expenditure; while the "source" nodes do not require further intervention.

5. Conclusion

In this study, we used rich traffic data and network analysis techniques to explore and under-
stand the spatio-temporal traffic patterns in the complex and dynamic city of Istanbul. Our main
findings are summarized as follows:

• Through a comprehensive analysis of the temporal dynamics of the traffic network in Istanbul,
we have observed that the structure of traffic flow varies significantly according to different
months and social events. Notably, a marked change in traffic network was observed starting
from March 2020, a change that can be directly attributed to the Covid-19 pandemic. The
change in the network structure related to both Covid-19 and the school calendar shows the
dynamic nature of Istanbul traffic that is prone to change.

• The correlation analysis showed a generally decreasing trend of correlation with increasing
distance between nodes, suggesting a spatial heterogeneity in the traffic patterns across Is-
tanbul. However, there were exceptions to this pattern, highlighting the complexity of traffic
dynamics and the influence of local factors.

• The centrality analysis identified key regions or ’critical points’ that bear significant impacts
on the city’s traffic flow. These regions, including Beylikdüzü, Şişli, and the Avrasya Tunnel,
are characterized by high betweenness centrality and thus serve as crucial connections in the
traffic network.

• By employing a diffusion model, we were able to identify the main diffusion pathways and
conduct experimental testing to simulate congestion propagation scenarios. The model en-
abled us to predict the behavior of traffic flow, offering potential value for traffic management
strategies.
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These findings provide valuable insights for urban planners, policymakers, and transportation
authorities to understand the city’s traffic dynamics and devise strategies to improve traffic condi-
tions. Furthermore, the methodologies and models employed in this study could be extended and
applied to other cities or regions, contributing to the broader field of urban traffic analysis and
management.

It is worth noting that while our study provides a detailed analysis of Istanbul’s traffic patterns,
there are several potential directions for future research. These could include a more in-depth
analysis of the factors contributing to the observed traffic patterns, such as road infrastructure,
land use, and socio-economic factors, as well as the exploration of other types of centrality measures
and network analysis techniques. Moreover, additional datasets such as vehicle counts, population
density, and public transportation usage could be integrated to enrich the analysis. Finally, the
development of more sophisticated models to predict traffic conditions and simulate various traffic
management scenarios would be a valuable contribution to the field.

In conclusion, our work highlights the value of applying network analysis techniques to traffic
data to understand complex urban traffic patterns. Through this approach, we can gain insights
that help to manage traffic more effectively, plan infrastructure development, and ultimately, con-
tribute to more sustainable and livable cities.
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